Fusing Color and Shape for Bag-of-Words Based Object Recognition
نویسندگان
چکیده
In this article we provide an analysis of existing methods for the incorporation of color in bag-of-words based image representations. We propose a list of desired properties on which bases fusing methods can be compared. We discuss existing methods and indicate shortcomings of the two well-known fusing methods, namely early and late fusion. Several recent works have addressed these shortcomings by exploiting top-down information in the bag-of-words pipeline: color attention which is motivated from human vision, and Portmanteau vocabularies which are based on information theoretic compression of product vocabularies. We point out several remaining challenges in cue fusion and provide directions for future research.
منابع مشابه
A New Biologically Inspired Color Image Descriptor
We describe a novel framework for the joint processing of color and shape information in natural images. A hierarchical non-linear spatio-chromatic operator yields spatial and chromatic opponent channels, which mimics processing in the primate visual cortex. We extend two popular object recognition systems (i.e., the Hmax hierarchical model of visual processing and a sift-based bag-of-words app...
متن کاملA "Shape Aware" Model for semi-supervised Learning of Objects and its Context
We present an approach that combines bag-of-words and spatial models to perform semantic and syntactic analysis for recognition of an object based on its internal appearance and its context. We argue that while object recognition requires modeling relative spatial locations of image features within the object, a bag-of-word is sufficient for representing context. Learning such a model from weak...
متن کاملA Surf-color Moments for Images Retrieval Based on Bag-of- Features
An important research issue in multimedia databases is the retrieval of similar objects. Most of the Content-Based Image Retrieval (CBIR) system uses the low-level features such as color, texture and shape to extract the features from the images. In Recent years the Interest points are used to extract the most similar images with different view point and different transformations. SURF is fast ...
متن کاملFusing Color and Geometry Information for Understanding Cluttered Scenes
In this paper, we introduce a new image processing pipeline for scene recognition and pose estimation in robotic applications. Unknown objects are autonomously modeled resulting in geometric 3D models and color images. Theses models are then used for object recognition in cluttered scenes by merging color and geometry information. Our recognition approach generates new suitable feature vectors ...
متن کاملObject Detection Applied to Indoor Environments for Mobile Robot Navigation
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects...
متن کامل